Mappings of finite distortion on metric surfaces: Mappings of finite distortion

We investigate basic properties of mappings of finite distortion f : X → R 2 , where X is any metric surface , i.e., metric space homeomorphic to a planar domain with locally finite 2-dimensional Hausdorff measure. We introduce lower gradients , which complement the upper gradients of Heinonen and K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2025, Vol.391 (2), p.2479-2507
Hauptverfasser: Meier, Damaris, Rajala, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate basic properties of mappings of finite distortion f : X → R 2 , where X is any metric surface , i.e., metric space homeomorphic to a planar domain with locally finite 2-dimensional Hausdorff measure. We introduce lower gradients , which complement the upper gradients of Heinonen and Koskela, to study the distortion of non-homeomorphic maps on metric spaces. We extend the Iwaniec-Šverák theorem to metric surfaces: a non-constant f : X → R 2 with locally square integrable upper gradient and locally integrable distortion is continuous, open and discrete. We also extend the Hencl-Koskela theorem by showing that if f is moreover injective then f - 1 is a Sobolev map.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-024-02972-z