Mappings of finite distortion on metric surfaces: Mappings of finite distortion
We investigate basic properties of mappings of finite distortion f : X → R 2 , where X is any metric surface , i.e., metric space homeomorphic to a planar domain with locally finite 2-dimensional Hausdorff measure. We introduce lower gradients , which complement the upper gradients of Heinonen and K...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2025, Vol.391 (2), p.2479-2507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate basic properties of
mappings of finite distortion
f
:
X
→
R
2
, where
X
is any
metric surface
, i.e., metric space homeomorphic to a planar domain with locally finite 2-dimensional Hausdorff measure. We introduce
lower gradients
, which complement the upper gradients of Heinonen and Koskela, to study the distortion of non-homeomorphic maps on metric spaces. We extend the Iwaniec-Šverák theorem to metric surfaces: a non-constant
f
:
X
→
R
2
with locally square integrable upper gradient and locally integrable distortion is continuous, open and discrete. We also extend the Hencl-Koskela theorem by showing that if
f
is moreover injective then
f
-
1
is a Sobolev map. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-024-02972-z |