Semisimple types for p-adic classical groups
We construct, for any symplectic, unitary or special orthogonal group over a locally compact nonarchimedean local field of odd residual characteristic, a type for each Bernstein component of the category of smooth representations, using Bushnell–Kutzko’s theory of covers. Moreover, for a component c...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2014-02, Vol.358 (1-2), p.257-288 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct, for any symplectic, unitary or special orthogonal group over a locally compact nonarchimedean local field of odd residual characteristic, a type for each Bernstein component of the category of smooth representations, using Bushnell–Kutzko’s theory of covers. Moreover, for a component corresponding to a cuspidal representation of a maximal Levi subgroup, we prove that the Hecke algebra is either abelian, or a generic Hecke algebra on an infinite dihedral group, with parameters which are, at least in principle, computable via results of Lusztig. In an appendix, we make a correction to the proof of a result of the second author: that every irreducible cuspidal representation of a classical group as considered here is irreducibly compactly-induced from a type. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-013-0953-y |