Baumgartner’s isomorphism problem for ℵ2-dense suborders of R

In this paper we will analyze Baumgartner’s problem asking whether it is consistent that 2 ℵ 0 ≥ ℵ 2 and every pair of ℵ 2 -dense subsets of R are isomorphic as linear orders. The main result is the isolation of a combinatorial principle ( ∗ ∗ ) which is immune to c.c.c. forcing and which in the pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2017-11, Vol.56 (7-8), p.1105-1114
Hauptverfasser: Moore, Justin Tatch, Todorcevic, Stevo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we will analyze Baumgartner’s problem asking whether it is consistent that 2 ℵ 0 ≥ ℵ 2 and every pair of ℵ 2 -dense subsets of R are isomorphic as linear orders. The main result is the isolation of a combinatorial principle ( ∗ ∗ ) which is immune to c.c.c. forcing and which in the presence of 2 ℵ 0 ≤ ℵ 2 implies that two ℵ 2 -dense sets of reals can be forced to be isomorphic via a c.c.c. poset. Also, it will be shown that it is relatively consistent with ZFC that there exists an ℵ 2 dense suborder X of R which cannot be embedded into - X in any outer model with the same ℵ 2 .
ISSN:0933-5846
1432-0665
DOI:10.1007/s00153-017-0549-4