Characterizing W2,p Submanifolds by p -Integrability of Global Curvatures

We give sufficient and necessary geometric conditions, guaranteeing that an immersed compact closed manifold of class C 1 and of arbitrary dimension and codimension (or, more generally, an Ahlfors-regular compact set Σ satisfying a mild general condition relating the size of holes in Σ to the flatne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2013, Vol.23 (3), p.937-984
Hauptverfasser: Kolasiński, Sławomir, Strzelecki, Paweł, von der Mosel, Heiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give sufficient and necessary geometric conditions, guaranteeing that an immersed compact closed manifold of class C 1 and of arbitrary dimension and codimension (or, more generally, an Ahlfors-regular compact set Σ satisfying a mild general condition relating the size of holes in Σ to the flatness of Σ measured in terms of beta numbers) is in fact an embedded manifold of class , where p  >  m and τ  = 1 − m / p . The results are based on a careful analysis of Morrey estimates for integral curvature–like energies, with integrands expressed geometrically, in terms of functions that are designed to measure either (a) the shape of simplices with vertices on Σ or (b) the size of spheres tangent to Σ at one point and passing through another point of Σ. Appropriately defined maximal functions of such integrands turn out to be of class L p (Σ) for p  >  m if and only if the local graph representations of Σ have second order derivatives in L p and Σ is embedded. There are two ingredients behind this result. One of them is an equivalent definition of Sobolev spaces, widely used nowadays in analysis on metric spaces. The second one is a careful analysis of local Reifenberg flatness (and of the decay of functions measuring that flatness) for sets with finite curvature energies. In addition, for the geometric curvature energy involving tangent spheres we provide a nontrivial lower bound that is attained if and only if the admissible set Σ is a round sphere.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-013-0222-y