Uniqueness for Inverse Boundary Value Problems by Dirichlet-to-Neumann Map on Subboundaries

We consider inverse boundary value problems for elliptic equations of second order of determining coefficients by Dirichlet-to-Neumann map on subboundaries, that is, the mapping from Dirichlet data supported on subboundary ∂ Ω \ Γ - to Neumann data on subboundary ∂ Ω \ Γ + . First we prove uniquenes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Milan journal of mathematics 2013-12, Vol.81 (2), p.187-258
Hauptverfasser: Imanuvilov, Oleg Y., Yamamoto, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider inverse boundary value problems for elliptic equations of second order of determining coefficients by Dirichlet-to-Neumann map on subboundaries, that is, the mapping from Dirichlet data supported on subboundary ∂ Ω \ Γ - to Neumann data on subboundary ∂ Ω \ Γ + . First we prove uniqueness results in three dimensions under some conditions such as Γ + ∪ Γ - ¯ = ∂ Ω Next we survey uniqueness results in two dimensions for various elliptic systems for arbitrarily given Γ - = Γ + Our proof is based on complex geometric optics solutions which are constructed by a Carleman estimate.
ISSN:1424-9286
1424-9294
DOI:10.1007/s00032-013-0205-3