On the topology of the moduli of tropical unramified p-covers: On the topology of the moduli

We study the topology of the moduli space of unramified Z / p -covers of tropical curves of genus g ≥ 2 , where p is a prime number. We use recent techniques by Chan–Galatius–Payne to identify contractible subcomplexes of the moduli space. We then use this contractibility result to show that this mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2025, Vol.31 (1)
Hauptverfasser: El Maazouz, Yassine, Helminck, Paul Alexander, Röhrle, Felix, Souza, Pedro, Yun, Claudia He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the topology of the moduli space of unramified Z / p -covers of tropical curves of genus g ≥ 2 , where p is a prime number. We use recent techniques by Chan–Galatius–Payne to identify contractible subcomplexes of the moduli space. We then use this contractibility result to show that this moduli space is simply connected. In the case of genus 2, we determine the homotopy type of this moduli space for all primes p . This work is motivated by prospective applications to the top-weight cohomology of the space of prime cyclic étale covers of smooth algebraic curves.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-024-01007-4