On the topology of the moduli of tropical unramified p-covers: On the topology of the moduli
We study the topology of the moduli space of unramified Z / p -covers of tropical curves of genus g ≥ 2 , where p is a prime number. We use recent techniques by Chan–Galatius–Payne to identify contractible subcomplexes of the moduli space. We then use this contractibility result to show that this mo...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2025, Vol.31 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the topology of the moduli space of unramified
Z
/
p
-covers of tropical curves of genus
g
≥
2
, where
p
is a prime number. We use recent techniques by Chan–Galatius–Payne to identify contractible subcomplexes of the moduli space. We then use this contractibility result to show that this moduli space is simply connected. In the case of genus 2, we determine the homotopy type of this moduli space for all primes
p
. This work is motivated by prospective applications to the top-weight cohomology of the space of prime cyclic étale covers of smooth algebraic curves. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-024-01007-4 |