Exponential behavior and upper noise excitation index of solutions to evolution equations with unbounded delay and tempered fractional Brownian motions

In this paper, we investigate stochastic evolution equations with unbounded delay in fractional power spaces perturbed by a tempered fractional Brownian motion B Q σ , λ ( t ) with - 1 / 2 < σ < 0 and λ > 0 . We first introduce a technical lemma which is crucial in our stability analysis. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2021-06, Vol.21 (2), p.1779-1807
Hauptverfasser: Wang, Yejuan, Liu, Yarong, Caraballo, Tomás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate stochastic evolution equations with unbounded delay in fractional power spaces perturbed by a tempered fractional Brownian motion B Q σ , λ ( t ) with - 1 / 2 < σ < 0 and λ > 0 . We first introduce a technical lemma which is crucial in our stability analysis. Then, we prove the existence and uniqueness of mild solutions by using semigroup methods. The upper nonlinear noise excitation index of the energy solutions at any finite time t is also obtained. Finally, we consider the exponential asymptotic behavior of mild solutions in mean square.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-020-00656-0