Lq-Helmholtz Decomposition on Periodic Domains and Applications to Navier–Stokes Equations
We prove the existence of the Helmholtz decomposition L q ( Ω p , C d ) = L σ q ( Ω p ) ⊕ G q ( Ω p ) for periodic domains Ω p ⊆ R d with respect to a lattice L ⊆ R d , i.e. Ω p = Ω p + z for all z ∈ L , and for a suitable range of q depending on the regularity of the boundary. The proof of the Helm...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical fluid mechanics 2018, Vol.20 (3), p.1093-1121 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the existence of the Helmholtz decomposition
L
q
(
Ω
p
,
C
d
)
=
L
σ
q
(
Ω
p
)
⊕
G
q
(
Ω
p
)
for periodic domains
Ω
p
⊆
R
d
with respect to a lattice
L
⊆
R
d
, i.e.
Ω
p
=
Ω
p
+
z
for all
z
∈
L
, and for a suitable range of
q
depending on the regularity of the boundary. The proof of the Helmholtz decomposition builds upon recent Bloch multiplier theorems due to B. Barth. We give several applications to Stokes operators and Navier–Stokes equations on such domains. |
---|---|
ISSN: | 1422-6928 1422-6952 |
DOI: | 10.1007/s00021-017-0356-z |