Lq-Helmholtz Decomposition on Periodic Domains and Applications to Navier–Stokes Equations

We prove the existence of the Helmholtz decomposition L q ( Ω p , C d ) = L σ q ( Ω p ) ⊕ G q ( Ω p ) for periodic domains Ω p ⊆ R d with respect to a lattice L ⊆ R d , i.e. Ω p = Ω p + z for all z ∈ L , and for a suitable range of q depending on the regularity of the boundary. The proof of the Helm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2018, Vol.20 (3), p.1093-1121
Hauptverfasser: Babutzka, Jens, Kunstmann, Peer Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence of the Helmholtz decomposition L q ( Ω p , C d ) = L σ q ( Ω p ) ⊕ G q ( Ω p ) for periodic domains Ω p ⊆ R d with respect to a lattice L ⊆ R d , i.e. Ω p = Ω p + z for all z ∈ L , and for a suitable range of q depending on the regularity of the boundary. The proof of the Helmholtz decomposition builds upon recent Bloch multiplier theorems due to B. Barth. We give several applications to Stokes operators and Navier–Stokes equations on such domains.
ISSN:1422-6928
1422-6952
DOI:10.1007/s00021-017-0356-z