Box-counting by Hölder’s traveling salesman
We provide a sufficient Dini-type condition for a subset of a complete, quasiconvex metric space to be covered by a Hölder curve. This implies in particular that if the upper box-counting dimension is less than d ≥ 1 , then it can be covered by an 1 d -Hölder curve. On the other hand, for each 1 ≤ d...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2020-05, Vol.114 (5), p.561-572 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a sufficient Dini-type condition for a subset of a complete, quasiconvex metric space to be covered by a Hölder curve. This implies in particular that if the upper box-counting dimension is less than
d
≥
1
, then it can be covered by an
1
d
-Hölder curve. On the other hand, for each
1
≤
d
<
2
we give an example of a compact set in the plane with lower box-counting dimension equal to zero and upper box-counting dimension equal to
d
, just failing the above Dini-type condition, that can not be covered by a countable collection of
1
d
-Hölder curves. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-019-01415-5 |