Exact results for N = 2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants

A bstract We provide a contour integral formula for the exact partition function of N = 2 supersymmetric U( N ) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N = 2 ∗ theory on ℙ 2 for all in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-07, Vol.2016 (7)
Hauptverfasser: Bershtein, Mikhail, Bonelli, Giulio, Ronzani, Massimiliano, Tanzini, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We provide a contour integral formula for the exact partition function of N = 2 supersymmetric U( N ) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N = 2 ∗ theory on ℙ 2 for all instanton numbers. In the zero mass case, corresponding to the N = 4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a longstanding conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.
ISSN:1029-8479
DOI:10.1007/JHEP07(2016)023