Exact results for N = 2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants
A bstract We provide a contour integral formula for the exact partition function of N = 2 supersymmetric U( N ) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N = 2 ∗ theory on ℙ 2 for all in...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2016-07, Vol.2016 (7) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We provide a contour integral formula for the exact partition function of
N
= 2 supersymmetric U(
N
) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2)
N
= 2
∗
theory on
ℙ
2
for all instanton numbers. In the zero mass case, corresponding to the
N
= 4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a longstanding conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new. |
---|---|
ISSN: | 1029-8479 |
DOI: | 10.1007/JHEP07(2016)023 |