Tissue Engineering Strategies for Bone Regeneration

Bone loss due to trauma or disease is an increasingly serious health problem. Current clinical treatments for critical-sized defects are problematic and often yield poor healing due to the complicated anatomy and physiology of bone tissue, as well as the limitations of medical technology. Bone tissu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mistry, Amit S., Mikos, Antonios G.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bone loss due to trauma or disease is an increasingly serious health problem. Current clinical treatments for critical-sized defects are problematic and often yield poor healing due to the complicated anatomy and physiology of bone tissue, as well as the limitations of medical technology. Bone tissue engineering offers a promising alternative strategy of healing severe bone injuries by utilizing the body’s natural biological response to tissue damage in conjunction with engineering principles. Osteogenic cells, growth factors, and biomaterial scaffolds form the foundation of the many bone tissue engineering strategies employed to achieve repair and restoration of damaged tissue. An ideal biomaterial scaffold will provide mechanical support to an injured site and also deliver growth factors and cells into a defect to encourage tissue growth. Additionally, this biomaterial should degrade in a controlled manner without causing a significant inflammatory response. The following chapter highlights multiple strategies and the most recent advances in various areas of research for bone tissue regeneration.
ISSN:0724-6145
1616-8542
DOI:10.1007/b99997