Gröbner bases, triangulations, and Koszul algebras

In this chapter we investigate the algebraic data of toric ideals that correspond to regular subdivisions of the cones generated by affine monoids: monomials orders and initial ideals.Though the correspondence is not strong enough for unconditional implications in either direction, it yields powerfu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bruns, Winfried, Gubeladze, Joseph
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this chapter we investigate the algebraic data of toric ideals that correspond to regular subdivisions of the cones generated by affine monoids: monomials orders and initial ideals.Though the correspondence is not strong enough for unconditional implications in either direction, it yields powerful results in cases where the unimodularity of triangulations or the squarefreeness of the initial ideals can be established. for example, the polytopal algebras defined by lattice polygons turn out to be Koszul algebras under the obvious necessary conditions.
ISSN:1439-7382
DOI:10.1007/b105283_7