Periodic solutions and associated limit cycle for the generalised Chazy equation
We study the generalised Chazy equation, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dddot x + x^q \ddot x + kx^...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the generalised Chazy equation, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\dddot x + x^q \ddot x + kx^{q - 1} \dot x^2 = 0$$
\end{document}, which is characterised by the symmetries of time translation and rescaling. For a large class of initial conditions numerical computations reveal the asymptotic appearence of periodic solutions for k=q+1. These solutions are identical after rescaling and, in this sense, exhibit the property of a limit cycle in the three dimensional phase space. The periodic solutions are related to a conventional limit cycle of a class of second order ordinary differential equations which are connected to the existence of a first integral of the generalised Chazy equation. |
---|---|
ISSN: | 0075-8450 1616-6361 |
DOI: | 10.1007/BFb0105938 |