Identification et estimation de semi-martingales representables par rapport a un brownien a un indice double
On utilise la variation quadratique et les variations produit à des niveaux différents pour identifier la partie martingale faible (soit théoriquement, supposant ces processus variations connus, soit statistiquement, au vu de l'observation d'une trajectoire). Pour estimer le terme à variat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | fre |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On utilise la variation quadratique et les variations produit à des niveaux différents pour identifier la partie martingale faible (soit théoriquement, supposant ces processus variations connus, soit statistiquement, au vu de l'observation d'une trajectoire). Pour estimer le terme à variations bornées B de la semi-martingale Z=Y+B, on étudie le comportement de Z sous un changement de probabilité. Ceci nous conduit à nous intéresser aux martingales exponentielles, ainsi qu'aux changements de probabilité conforme (i.e. préservant F 4). Lorsque la partie martingale de Z est forte, on établit un résultat d'absolue-continuité entre les mesures associées à Z et à Y. |
---|---|
ISSN: | 0075-8434 1617-9692 |
DOI: | 10.1007/BFb0091102 |