On the relations between finite differences and derivatives of cardinal spline functions
Let m be a natural number and let Sm denote the class of cardinal spline functions of degree m. The object of this note is to establish a linear relationship between the 2m+2 quantities s(i+x), s(i+1+x),...,s(i+m+x), s(k)(i+y), s(k)(i+1+y),...,s(k)(i+m+y), where x,y ∈ [0,1], i=0,±1,±2,... s ∈ Sm and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let m be a natural number and let Sm denote the class of cardinal spline functions of degree m. The object of this note is to establish a linear relationship between the 2m+2 quantities s(i+x), s(i+1+x),...,s(i+m+x), s(k)(i+y), s(k)(i+1+y),...,s(k)(i+m+y), where x,y ∈ [0,1], i=0,±1,±2,... s ∈ Sm and where s(k) denotes the k-th derivative of s (k=0,1,2,...,m−1). Using the shift operator E, we represent this relation in a simple form, involving the exponential Euler polynomials. The results are applied to cardinal spline interpolation. |
---|---|
ISSN: | 0075-8434 1617-9692 |
DOI: | 10.1007/BFb0079749 |