On the relations between finite differences and derivatives of cardinal spline functions

Let m be a natural number and let Sm denote the class of cardinal spline functions of degree m. The object of this note is to establish a linear relationship between the 2m+2 quantities s(i+x), s(i+1+x),...,s(i+m+x), s(k)(i+y), s(k)(i+1+y),...,s(k)(i+m+y), where x,y ∈ [0,1], i=0,±1,±2,... s ∈ Sm and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: ter Morsche, Hennie
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let m be a natural number and let Sm denote the class of cardinal spline functions of degree m. The object of this note is to establish a linear relationship between the 2m+2 quantities s(i+x), s(i+1+x),...,s(i+m+x), s(k)(i+y), s(k)(i+1+y),...,s(k)(i+m+y), where x,y ∈ [0,1], i=0,±1,±2,... s ∈ Sm and where s(k) denotes the k-th derivative of s (k=0,1,2,...,m−1). Using the shift operator E, we represent this relation in a simple form, involving the exponential Euler polynomials. The results are applied to cardinal spline interpolation.
ISSN:0075-8434
1617-9692
DOI:10.1007/BFb0079749