Coverage-directed test generation using symbolic techniques
In this paper, we present a verification methodology that integrates formal verification techniques with verification by simulation, thereby providing means for generating simulation test suites that ensure coverage. We derive the test suites by means of BDD-based symbolic techniques for describing...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a verification methodology that integrates formal verification techniques with verification by simulation, thereby providing means for generating simulation test suites that ensure coverage. We derive the test suites by means of BDD-based symbolic techniques for describing and traversing the implementation state space. In our approach, we provide a high-level of control over the generated test suites; a powerful abstraction mechanism directs the generation procedure to specific areas, that are the focus for verification, thereby withstanding the state explosion problem. The abstraction is achieved by partitioning the implementation state variables into categories of interest. We also depart from the traditional graph-algorithmic model for conformance testing; instead, using temporal logic assertions, we can generate a test suite where the set of state sequences (paths) satisfies some temporal properties as well as guaranteeing transition coverage. Our methodology has been successfully applied to the generation of test suites for IBM PowerPC and AS/400 systems. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/BFb0031805 |