Spectral properties of finite Toeplitz matrices

The paper contains an investigation of certain spectral properties of finite Hermitian Toeplitz matrices. Some classical results relative to a constant Toeplitz matrix C are first extended to the polynomial matrix λI-C. Next, Carathéodory's representation based on the smallest eigenvalue of C i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Delsarte, P., Genin, Y.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper contains an investigation of certain spectral properties of finite Hermitian Toeplitz matrices. Some classical results relative to a constant Toeplitz matrix C are first extended to the polynomial matrix λI-C. Next, Carathéodory's representation based on the smallest eigenvalue of C is generalized to the case of an arbitrary eigenvalue. The splitting of each eigenspace of a real symmetric Toeplitz matrix C into its reciprocal and antireciprocal subspaces is then characterized. New identities are derived relating the characteristic determinants of the reciprocal and antireciprocal components of the Toeplitz submatrices of C. A special attention is brought to the inverse eigenvalue problem for Toeplitz matrices and some examples are given.
ISSN:0170-8643
1610-7411
DOI:10.1007/BFb0031053