Image registration: Convex weighting functions for histogram-based similarity measures

Recently the entropy-similarity measure has been introduced for the registration of image pairs prior to subtraction in medical imaging e.g. digital subtraction angiography (DSA). The registration is based on motion-vector fields estimated with a template-matching techniques. The entropy is calculat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Buzug, Thorsten M., Weese, Jürgen, Fassnacht, Carola, Lorenz, Cristian
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently the entropy-similarity measure has been introduced for the registration of image pairs prior to subtraction in medical imaging e.g. digital subtraction angiography (DSA). The registration is based on motion-vector fields estimated with a template-matching techniques. The entropy is calculated via weighted grey-value histograms of the difference-image template and measures the degree of histogram dispersion in case of misregistration. In this paper, a generalization of the underlying concept is presented. We prove that any strictly convex function can be used as histogram-weighting function leading to a suitable similarity measure. The quality of the histogram-based measures is compared to other frequently used similarity measures. As a result the energy-similarity measure turns out to be the most suitable measure for template matching. The success of the registration will be demonstrated with a geometrically distorted pair of images taken of the abdomen.
ISSN:0302-9743
1611-3349
DOI:10.1007/BFb0029239