Preference logics and nonmonotonicity in logic programming

It is claimed that the notion of preference is a fundamental modality in computing and is a generalization of the notion of minimality. A logic of feasible preference is presented. The non-monotonic behavior of negation in logic programming is modeled as a symbolic optimization problem. As a case st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brown, Allen L., Mantha, Surya, Wakayama, Toshiro
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is claimed that the notion of preference is a fundamental modality in computing and is a generalization of the notion of minimality. A logic of feasible preference is presented. The non-monotonic behavior of negation in logic programming is modeled as a symbolic optimization problem. As a case study, for the class of logic programs with one or more stable models, we give a preferential transformation of logic programs that identifies their stable models as the optimal worlds in the intended model of the corresponding preferential theory. Minimization and minimization orderings are given explicit syntactic representations and their due status in the model theory. Preference logics gives a very elegant model theory for defaults, without any mention of fixpoints. Further, nonmonotonic reasoning is carried out in a monotonic logic, since members of the optimal worlds are not identified with theorems of a preferential theory. Preference logics have great potential to bring the areas of Symbolic Computation, Knowledge Representation and Classical Optimization closer.
ISSN:0302-9743
1611-3349
DOI:10.1007/BFb0023862