On the Burnside semigroups xn= xn+m
In this paper we show that the congruence classes of A* associated to the Burnside semigroup with ¦A¦ generators defined by the equation xn=xn+m, for n≥4 and m≥1, are recognizable. This problem was originally formulated by Brzozowski in 1969 for m=1 and n≥2. Two years ago Aldo de Luca and Stefano Va...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show that the congruence classes of A* associated to the Burnside semigroup with ¦A¦ generators defined by the equation xn=xn+m, for n≥4 and m≥1, are recognizable.
This problem was originally formulated by Brzozowski in 1969 for m=1 and n≥2. Two years ago Aldo de Luca and Stefano Varricchio solved the problem for n≥5. A little later, John McCammond extended the problem for m≥ 1 and solved it independently in the cases n≥6 and m≥1. Our work, which is based on the techniques developed by de Luca and Varricchio, extends both these results.
We effectively construct a minimal generator ∑ of our congruence. We introduce an elementary concept, namely the stability of productions, which allows us to eliminate all hypotheses related to the values of n and m. A substantial part of our proof consists of showing that all productions in ∑ are stable for n≥ 4 and m≥ 1.
We also give an algorithm that solves the word problem and shows that the semigroup is finite \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{J}$$
\end{document}-above. We prove that the frame of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{R}$$
\end{document}-classes of the semigroup is a tree. We characterize also the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{R}$$
\end{document}-classes and the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{D}$$
\end{document}-classes of the semigroup and prove that its maximal subgroups are cyclic of order m in the cases n≥4 and m≥1. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/BFb0023839 |