Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata
Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | |
container_start_page | 367 |
container_title | |
container_volume | |
creator | Thistle, J. G. Wonham, W. M. |
description | Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions. |
doi_str_mv | 10.1007/BFb0023782 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0023782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0023782</sourcerecordid><originalsourceid>FETCH-LOGICAL-s188t-1d14b70b4dd615f7f7bf222ae62b07515ef3e5a5a68f85ac9e65f4eb42620d873</originalsourceid><addsrcrecordid>eNpNkLtOwzAYRs1NopQuPIE3GBrw70vsjBBRQKrEAlK3yG5-00ISV7b7EDwdrwSoCPiWbzjSGQ4hZ8AugTF9dTNzjHGhDd8jJ0JJJjU3CvbJCEqAQghZHeyAUtpUi0MyYoLxotJSHJNJSq_sa4JzEHxEFnUYcgwdDZ5-vBd2m0Nvs53SerWNy9V5opsYXIf9lNqhpXmFFPtNXg-YfhH1IdIcEf8bTsmRt13Cyc-PyfPs9qm-L-aPdw_19bxIYEwuoAXpNHOybUtQXnvtPOfcYskd0woUeoHKKlsab5RdVlgqL9FJXnLWGi3G5GLnTZu4Hl4wNi6Et9QAa75zNX-5xCdPcVlX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata</title><source>Springer Books</source><creator>Thistle, J. G. ; Wonham, W. M.</creator><contributor>Jäger, Gerhard ; Kleine Büning, Hans ; Richter, Michael M. ; Börger, Egon</contributor><creatorcontrib>Thistle, J. G. ; Wonham, W. M. ; Jäger, Gerhard ; Kleine Büning, Hans ; Richter, Michael M. ; Börger, Egon</creatorcontrib><description>Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354055789X</identifier><identifier>ISBN: 9783540557890</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540472851</identifier><identifier>EISBN: 9783540472858</identifier><identifier>DOI: 10.1007/BFb0023782</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acceptance Condition ; Infinite Tree ; Sequential Calculus ; State Subset ; Tree Automaton</subject><ispartof>Computer Science Logic, 1992, p.367-381</ispartof><rights>Springer-Verlag Berlin Heidelberg 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0023782$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0023782$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Jäger, Gerhard</contributor><contributor>Kleine Büning, Hans</contributor><contributor>Richter, Michael M.</contributor><contributor>Börger, Egon</contributor><creatorcontrib>Thistle, J. G.</creatorcontrib><creatorcontrib>Wonham, W. M.</creatorcontrib><title>Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata</title><title>Computer Science Logic</title><description>Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions.</description><subject>Acceptance Condition</subject><subject>Infinite Tree</subject><subject>Sequential Calculus</subject><subject>State Subset</subject><subject>Tree Automaton</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354055789X</isbn><isbn>9783540557890</isbn><isbn>3540472851</isbn><isbn>9783540472858</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1992</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNkLtOwzAYRs1NopQuPIE3GBrw70vsjBBRQKrEAlK3yG5-00ISV7b7EDwdrwSoCPiWbzjSGQ4hZ8AugTF9dTNzjHGhDd8jJ0JJJjU3CvbJCEqAQghZHeyAUtpUi0MyYoLxotJSHJNJSq_sa4JzEHxEFnUYcgwdDZ5-vBd2m0Nvs53SerWNy9V5opsYXIf9lNqhpXmFFPtNXg-YfhH1IdIcEf8bTsmRt13Cyc-PyfPs9qm-L-aPdw_19bxIYEwuoAXpNHOybUtQXnvtPOfcYskd0woUeoHKKlsab5RdVlgqL9FJXnLWGi3G5GLnTZu4Hl4wNi6Et9QAa75zNX-5xCdPcVlX</recordid><startdate>19920101</startdate><enddate>19920101</enddate><creator>Thistle, J. G.</creator><creator>Wonham, W. M.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>19920101</creationdate><title>Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata</title><author>Thistle, J. G. ; Wonham, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s188t-1d14b70b4dd615f7f7bf222ae62b07515ef3e5a5a68f85ac9e65f4eb42620d873</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Acceptance Condition</topic><topic>Infinite Tree</topic><topic>Sequential Calculus</topic><topic>State Subset</topic><topic>Tree Automaton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thistle, J. G.</creatorcontrib><creatorcontrib>Wonham, W. M.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thistle, J. G.</au><au>Wonham, W. M.</au><au>Jäger, Gerhard</au><au>Kleine Büning, Hans</au><au>Richter, Michael M.</au><au>Börger, Egon</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata</atitle><btitle>Computer Science Logic</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1992-01-01</date><risdate>1992</risdate><spage>367</spage><epage>381</epage><pages>367-381</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354055789X</isbn><isbn>9783540557890</isbn><eisbn>3540472851</eisbn><eisbn>9783540472858</eisbn><abstract>Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0023782</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Science Logic, 1992, p.367-381 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0023782 |
source | Springer Books |
subjects | Acceptance Condition Infinite Tree Sequential Calculus State Subset Tree Automaton |
title | Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Control%20of%20%CF%89-automata,%20Church's%20problem,%20and%20the%20emptiness%20problem%20for%20tree%20%CF%89-automata&rft.btitle=Computer%20Science%20Logic&rft.au=Thistle,%20J.%20G.&rft.date=1992-01-01&rft.spage=367&rft.epage=381&rft.pages=367-381&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354055789X&rft.isbn_list=9783540557890&rft_id=info:doi/10.1007/BFb0023782&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0023782%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540472851&rft.eisbn_list=9783540472858&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |