Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata

Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thistle, J. G., Wonham, W. M.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue
container_start_page 367
container_title
container_volume
creator Thistle, J. G.
Wonham, W. M.
description Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions.
doi_str_mv 10.1007/BFb0023782
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0023782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0023782</sourcerecordid><originalsourceid>FETCH-LOGICAL-s188t-1d14b70b4dd615f7f7bf222ae62b07515ef3e5a5a68f85ac9e65f4eb42620d873</originalsourceid><addsrcrecordid>eNpNkLtOwzAYRs1NopQuPIE3GBrw70vsjBBRQKrEAlK3yG5-00ISV7b7EDwdrwSoCPiWbzjSGQ4hZ8AugTF9dTNzjHGhDd8jJ0JJJjU3CvbJCEqAQghZHeyAUtpUi0MyYoLxotJSHJNJSq_sa4JzEHxEFnUYcgwdDZ5-vBd2m0Nvs53SerWNy9V5opsYXIf9lNqhpXmFFPtNXg-YfhH1IdIcEf8bTsmRt13Cyc-PyfPs9qm-L-aPdw_19bxIYEwuoAXpNHOybUtQXnvtPOfcYskd0woUeoHKKlsab5RdVlgqL9FJXnLWGi3G5GLnTZu4Hl4wNi6Et9QAa75zNX-5xCdPcVlX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata</title><source>Springer Books</source><creator>Thistle, J. G. ; Wonham, W. M.</creator><contributor>Jäger, Gerhard ; Kleine Büning, Hans ; Richter, Michael M. ; Börger, Egon</contributor><creatorcontrib>Thistle, J. G. ; Wonham, W. M. ; Jäger, Gerhard ; Kleine Büning, Hans ; Richter, Michael M. ; Börger, Egon</creatorcontrib><description>Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354055789X</identifier><identifier>ISBN: 9783540557890</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540472851</identifier><identifier>EISBN: 9783540472858</identifier><identifier>DOI: 10.1007/BFb0023782</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acceptance Condition ; Infinite Tree ; Sequential Calculus ; State Subset ; Tree Automaton</subject><ispartof>Computer Science Logic, 1992, p.367-381</ispartof><rights>Springer-Verlag Berlin Heidelberg 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0023782$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0023782$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Jäger, Gerhard</contributor><contributor>Kleine Büning, Hans</contributor><contributor>Richter, Michael M.</contributor><contributor>Börger, Egon</contributor><creatorcontrib>Thistle, J. G.</creatorcontrib><creatorcontrib>Wonham, W. M.</creatorcontrib><title>Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata</title><title>Computer Science Logic</title><description>Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions.</description><subject>Acceptance Condition</subject><subject>Infinite Tree</subject><subject>Sequential Calculus</subject><subject>State Subset</subject><subject>Tree Automaton</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354055789X</isbn><isbn>9783540557890</isbn><isbn>3540472851</isbn><isbn>9783540472858</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1992</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNkLtOwzAYRs1NopQuPIE3GBrw70vsjBBRQKrEAlK3yG5-00ISV7b7EDwdrwSoCPiWbzjSGQ4hZ8AugTF9dTNzjHGhDd8jJ0JJJjU3CvbJCEqAQghZHeyAUtpUi0MyYoLxotJSHJNJSq_sa4JzEHxEFnUYcgwdDZ5-vBd2m0Nvs53SerWNy9V5opsYXIf9lNqhpXmFFPtNXg-YfhH1IdIcEf8bTsmRt13Cyc-PyfPs9qm-L-aPdw_19bxIYEwuoAXpNHOybUtQXnvtPOfcYskd0woUeoHKKlsab5RdVlgqL9FJXnLWGi3G5GLnTZu4Hl4wNi6Et9QAa75zNX-5xCdPcVlX</recordid><startdate>19920101</startdate><enddate>19920101</enddate><creator>Thistle, J. G.</creator><creator>Wonham, W. M.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>19920101</creationdate><title>Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata</title><author>Thistle, J. G. ; Wonham, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s188t-1d14b70b4dd615f7f7bf222ae62b07515ef3e5a5a68f85ac9e65f4eb42620d873</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Acceptance Condition</topic><topic>Infinite Tree</topic><topic>Sequential Calculus</topic><topic>State Subset</topic><topic>Tree Automaton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thistle, J. G.</creatorcontrib><creatorcontrib>Wonham, W. M.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thistle, J. G.</au><au>Wonham, W. M.</au><au>Jäger, Gerhard</au><au>Kleine Büning, Hans</au><au>Richter, Michael M.</au><au>Börger, Egon</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata</atitle><btitle>Computer Science Logic</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1992-01-01</date><risdate>1992</risdate><spage>367</spage><epage>381</epage><pages>367-381</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354055789X</isbn><isbn>9783540557890</isbn><eisbn>3540472851</eisbn><eisbn>9783540472858</eisbn><abstract>Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0023782</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Science Logic, 1992, p.367-381
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_BFb0023782
source Springer Books
subjects Acceptance Condition
Infinite Tree
Sequential Calculus
State Subset
Tree Automaton
title Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Control%20of%20%CF%89-automata,%20Church's%20problem,%20and%20the%20emptiness%20problem%20for%20tree%20%CF%89-automata&rft.btitle=Computer%20Science%20Logic&rft.au=Thistle,%20J.%20G.&rft.date=1992-01-01&rft.spage=367&rft.epage=381&rft.pages=367-381&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354055789X&rft.isbn_list=9783540557890&rft_id=info:doi/10.1007/BFb0023782&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0023782%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540472851&rft.eisbn_list=9783540472858&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true