Control of ω-automata, Church's problem, and the emptiness problem for tree ω-automata

Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thistle, J. G., Wonham, W. M.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Church's problem and the emptiness problem for Rabin automata on infinite trees, which represent basic paradigms for program synthesis and logical decision procedures, are formulated as a control problem for automata on infinite strings. The alphabet of an automaton is interpreted not as a set of input symbols giving rise to state transitions but rather as a set of output symbols generated during spontaneous state transitions; in addition, it is assumed that automata can be “controlled” through the imposition of certain allowable restrictions on the set of symbols that may be generated at a given instant. The problems in question are then recast as that of deciding membership in a deterministic Rabin automaton's controllability subset — the set of states from which the automaton can be controlled to the satisfaction of its own acceptance condition. The new formulation leads to a direct, efficient and natural solution based on a fixpoint representation of the controllability subset. This approach combines advantages of earlier solutions and admits useful extensions incorporating liveness assumptions.
ISSN:0302-9743
1611-3349
DOI:10.1007/BFb0023782