Dynamic k-dimensional multiway search under time-varying access frequencies
We consider multiway search trees for k-dimensional search under time-varying access frequencies. Let S = {kl,...,kn} be a set of k-dimensional keys, k≥1, and let pit be the number of accesses to ki, also called frequency of ki, up to time t, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepa...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider multiway search trees for k-dimensional search under time-varying access frequencies. Let S = {kl,...,kn} be a set of k-dimensional keys, k≥1, and let pit be the number of accesses to ki, also called frequency of ki, up to time t, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$W^t = \sum\limits_{i = 1}^n {p_i^t }$$
\end{document}. We present weighted (k+1)B-trees of order d, d≥1, with the following properties:A search for key ki can be performed in time 0(min(n,logd+1Wt/pit)+(k−1)), i.e. the tree is always nearly optimal.The time for updating after a search is at most proportional to search time.Insertion of a new key with arbitrary frequency as well as deletion of a key with arbitrary frequency can be carried out in time 0(min(n,logd+1Wt)+(k−1)). |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/BFb0017305 |