Embeddings of hyper-rings in hypercubes
A graph G=(V, E) with N nodes is called an N-hyper-ring if V={0,..., N−1} and E={(u, v) ¦ (u− v) modulo N is a power of 2}. We study embeddings of the 2n-hyper-ring in the n-dimensional hypercube. We show a greedy embedding with dilation 2 and congestion n+1 and a modified greedy embedding with dila...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph G=(V, E) with N nodes is called an N-hyper-ring if V={0,..., N−1} and E={(u, v) ¦ (u− v) modulo N is a power of 2}. We study embeddings of the 2n-hyper-ring in the n-dimensional hypercube. We show a greedy embedding with dilation 2 and congestion n+1 and a modified greedy embedding with dilation 4 and congestion 6. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/BFb0015437 |