Embeddings of hyper-rings in hypercubes

A graph G=(V, E) with N nodes is called an N-hyper-ring if V={0,..., N−1} and E={(u, v) ¦ (u− v) modulo N is a power of 2}. We study embeddings of the 2n-hyper-ring in the n-dimensional hypercube. We show a greedy embedding with dilation 2 and congestion n+1 and a modified greedy embedding with dila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hamada, Yukihiro, Mei, Aohan, Nishitani, Yasuaki, Igarashi, Yoshihide
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph G=(V, E) with N nodes is called an N-hyper-ring if V={0,..., N−1} and E={(u, v) ¦ (u− v) modulo N is a power of 2}. We study embeddings of the 2n-hyper-ring in the n-dimensional hypercube. We show a greedy embedding with dilation 2 and congestion n+1 and a modified greedy embedding with dilation 4 and congestion 6.
ISSN:0302-9743
1611-3349
DOI:10.1007/BFb0015437