Targeted, Amplicon-Based, Next-Generation Sequencing to Detect Age-Related Clonal Hematopoiesis
Aging hematopoietic stem cells acquire mutations that sometimes impart a selective advantage. Next-generation DNA sequencing (NGS) can be used to detect expanded peripheral blood progeny of a mutant clone, usually carrying just one cancer-driver mutation, most often in the epigenetic regulator genes...
Gespeichert in:
Veröffentlicht in: | Methods in molecular biology (Clifton, N.J.) N.J.), 2019, Vol.2045, p.167-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aging hematopoietic stem cells acquire mutations that sometimes impart a selective advantage. Next-generation DNA sequencing (NGS) can be used to detect expanded peripheral blood progeny of a mutant clone, usually carrying just one cancer-driver mutation, most often in the epigenetic regulator genes, DNMT3A or TET2. This phenomenon is known as clonal hematopoiesis (CH), age-related CH (ARCH) when considering its association with age, and CH of indeterminate potential (CHIP) when the variant allele fraction (VAF) is at least 2% in peripheral leukocytes. CHIP is present in at least 10–15% of adults older than 65 years and is a risk factor for hematological neoplasms and diseases exacerbated by mutant, hyper-inflammatory, monocytes/macrophages, such as atherosclerotic cardiovascular disease. Therefore, the detection of CHIP has important clinical consequences. Herein, we present a protocol for the generation of targeted, amplicon-based, NGS libraries for ion semiconductor sequencing and CHIP detection, using Ion Torrent platforms. |
---|---|
ISSN: | 1064-3745 1940-6029 |
DOI: | 10.1007/7651_2019_216 |