A Three-Dimensional Circulation Model of Lake Bardawil, Egypt

Lake Bardawil is an important hypersaline lake located in Egypt on the coast of the Sini Peninsula adjacent to the Mediterranean Sea. The lake is host to several industries which provide critical contributions to the regional economy including farmed and wild-caught fisheries and salt extraction. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bek, M. A., Cowles, G. W.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lake Bardawil is an important hypersaline lake located in Egypt on the coast of the Sini Peninsula adjacent to the Mediterranean Sea. The lake is host to several industries which provide critical contributions to the regional economy including farmed and wild-caught fisheries and salt extraction. The lake also has significant ecological importance, serving as a rest stop and overwintering location for a numerous waterfowl. To date, only limited studies of circulation and water properties have been performed leaving lake managers without the information needed to make strategic decisions needed to mitigate long-term threats to the lake stemming from regional infrastructure projects, expansion of industry, and natural processes such as inlet shoaling. The present chapter presents a numerical model of Lake Bardawil which can be used to study dynamic processes and predict the outcome of management actions. The approach predicts the three-dimensional circulation using an unstructured grid approach which enables resolution of the complex coastline and wide range of spatial scales associated with the lake. In a validation study, the model was found to reproduce the annual variation and magnitude of monthly averaged salinity at ten measurement stations but significantly overpredict salinity at the two stations in the shallow far western section of the lake. The model demonstrates that evaporation, wind forcing, and tidal exchanges all play important roles in lake forcing. The present work represents a critical step toward the longer-term goal of establishing an operational circulation model for Lake Bardawil which can be employed as a tool by managers to assist and accelerate the decision-making process.
ISSN:1867-979X
1616-864X
DOI:10.1007/698_2018_279