Different Phase Change Material Implementations for Thermal Energy Storage

This paper presents the principal methods available for phase change material (PCM) implementation in different storage applications. The first part is devoted to a non-exhaustive overview of the various chemical processes used to develop stable PCM (such as microencapsulation, emulsion polymerizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karkri, Mustapha, Lefebvre, Gilles, Royon, Laurent
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the principal methods available for phase change material (PCM) implementation in different storage applications. The first part is devoted to a non-exhaustive overview of the various chemical processes used to develop stable PCM (such as microencapsulation, emulsion polymerization or suspension polycondensation, polyaddition, etc.) based on the available literature. The second part deals with shape-stabilized PCM, developed from an intimate combination of a polymer matrix and a phase change element. Materials able to include more thermal energy as usual ones are interesting as they increase the thermal inertia of the system that presents by this way advantages. The energy efficiency of buildings may be improved including PCMs that store and provide enthalpy from one hand and without any significant temperature modification during the phase change process on the other hand. If the solid phase of the PCM does not present any problem, it is not the same for the liquid phase which must be maintained mechanically at its assigned location. Furthermore, the PCM in the solid (and furthermore in the liquid phase) does not have mechanical properties which allow to use it as a structural material able to support charge loads. This paper presents different methods to distribute and maintain the PCM in the thermal solid matrix.
ISSN:1867-979X
1616-864X
DOI:10.1007/698_2015_332