A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems
Following Karmarkar's 1984 linear programming algorithm, numerous interior-point algorithms have been proposed for various mathematical programming problems such as linear programming, convex quadratic programming and convex programming in general. This monograph presents a study of interior-po...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following Karmarkar's 1984 linear programming algorithm, numerous interior-point algorithms have been proposed for various mathematical programming problems such as linear programming, convex quadratic programming and convex programming in general. This monograph presents a study of interior-point algorithms for the linear complementarity problem (LCP) which is known as a mathematical model for primal-dual pairs of linear programs and convex quadratic programs. A large family of potential reduction algorithms is presented in a unified way for the class of LCPs where the underlying matrix has nonnegative principal minors (P0-matrix). This class includes various important subclasses such as positive semi-definite matrices, P-matrices, P*-matrices introduced in this monograph, and column sufficient matrices. The family contains not only the usual potential reduction algorithms but also path following algorithms and a damped Newton method for the LCP. The main topics are global convergence, global linear convergence, and the polynomial-time convergence of potential reduction algorithms included in the family. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-54509-3 |