Self-Nucleation of Crystalline Phases Within Homopolymers, Polymer Blends, Copolymers, and Nanocomposites

Self-nucleation (SN) is a special nucleation process triggered by self-seeds or self-nuclei that are generated in a given polymeric material by specific thermal protocols or by inducing chain orientation in the molten or partially molten state. SN increases the nucleation density of polymers by seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Michell, R. M., Mugica, A., Zubitur, M., Müller, A. J.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-nucleation (SN) is a special nucleation process triggered by self-seeds or self-nuclei that are generated in a given polymeric material by specific thermal protocols or by inducing chain orientation in the molten or partially molten state. SN increases the nucleation density of polymers by several orders of magnitude, producing significant modifications to their morphology and overall crystallization kinetics. In fact, SN can be used as a tool for investigating the overall isothermal crystallization kinetics of slow-crystallizing materials by accelerating the primary nucleation stage in a previous SN step. Additionally, SN can facilitate the formation of one particular crystalline phase in polymorphic materials. The SN behavior of a given polymer is influenced by its molecular weight, molecular topology, and chemical structure, among other intrinsic and extrinsic characteristics. This review paper focuses on the applications of DSC-based SN techniques to study the nucleation, crystallization, and morphology of different types of polymers, blends, copolymers, and nanocomposites.
ISSN:0065-3195
1436-5030
DOI:10.1007/12_2015_327