Discovering Consensus Patterns in Biological Databases

Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ElTabakh, Mohamed Y., Aref, Walid G., Ouzzani, Mourad, Ali, Mohamed H.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue
container_start_page 170
container_title
container_volume
creator ElTabakh, Mohamed Y.
Aref, Walid G.
Ouzzani, Mourad
Ali, Mohamed H.
description Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.
doi_str_mv 10.1007/11960669_15
format Conference Proceeding
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11960669_15</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11960669_15</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-9df8328e889ca9c2f87c47c50716350fed004787cfa26bab857d7171085efd2e3</originalsourceid><addsrcrecordid>eNpVkEtLxEAQhMcXGNac_AO5eoh2pzOvo-6uD1jQg57DZDKzRENG0tHf76560LoUVEHxUUKcI1wigL5CtAqUsg3KA5FbbUjWoIzVSIciQ4VYEtX26F8H6lhkQFCVVtd0KnLmV9iJUCOYTKhVzz59hqkft8UyjRxG_uDiyc1zmEYu-rG46dOQtr13Q7Fys2sdBz4TJ9ENHPJfX4iX2_Xz8r7cPN49LK83JaOxc2m7aKgywRjrnfVVNNrX2kvQqEhCDB1ArXdhdJVqXWuk7vQ3mQyxqwItxMXPLr_vCcPUtCm9cYPQ7D9p_nxCXwCBTaE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discovering Consensus Patterns in Biological Databases</title><source>Springer Books</source><creator>ElTabakh, Mohamed Y. ; Aref, Walid G. ; Ouzzani, Mourad ; Ali, Mohamed H.</creator><contributor>Dalkilic, Mehmet M. ; Yang, Jiong ; Kim, Sun</contributor><creatorcontrib>ElTabakh, Mohamed Y. ; Aref, Walid G. ; Ouzzani, Mourad ; Ali, Mohamed H. ; Dalkilic, Mehmet M. ; Yang, Jiong ; Kim, Sun</creatorcontrib><description>Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540689706</identifier><identifier>ISBN: 3540689702</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540689713</identifier><identifier>EISBN: 3540689710</identifier><identifier>DOI: 10.1007/11960669_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Data Mining and Bioinformatics, 2006, p.170-184</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11960669_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11960669_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Dalkilic, Mehmet M.</contributor><contributor>Yang, Jiong</contributor><contributor>Kim, Sun</contributor><creatorcontrib>ElTabakh, Mohamed Y.</creatorcontrib><creatorcontrib>Aref, Walid G.</creatorcontrib><creatorcontrib>Ouzzani, Mourad</creatorcontrib><creatorcontrib>Ali, Mohamed H.</creatorcontrib><title>Discovering Consensus Patterns in Biological Databases</title><title>Data Mining and Bioinformatics</title><description>Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.</description><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540689706</isbn><isbn>3540689702</isbn><isbn>9783540689713</isbn><isbn>3540689710</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNpVkEtLxEAQhMcXGNac_AO5eoh2pzOvo-6uD1jQg57DZDKzRENG0tHf76560LoUVEHxUUKcI1wigL5CtAqUsg3KA5FbbUjWoIzVSIciQ4VYEtX26F8H6lhkQFCVVtd0KnLmV9iJUCOYTKhVzz59hqkft8UyjRxG_uDiyc1zmEYu-rG46dOQtr13Q7Fys2sdBz4TJ9ENHPJfX4iX2_Xz8r7cPN49LK83JaOxc2m7aKgywRjrnfVVNNrX2kvQqEhCDB1ArXdhdJVqXWuk7vQ3mQyxqwItxMXPLr_vCcPUtCm9cYPQ7D9p_nxCXwCBTaE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>ElTabakh, Mohamed Y.</creator><creator>Aref, Walid G.</creator><creator>Ouzzani, Mourad</creator><creator>Ali, Mohamed H.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Discovering Consensus Patterns in Biological Databases</title><author>ElTabakh, Mohamed Y. ; Aref, Walid G. ; Ouzzani, Mourad ; Ali, Mohamed H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-9df8328e889ca9c2f87c47c50716350fed004787cfa26bab857d7171085efd2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ElTabakh, Mohamed Y.</creatorcontrib><creatorcontrib>Aref, Walid G.</creatorcontrib><creatorcontrib>Ouzzani, Mourad</creatorcontrib><creatorcontrib>Ali, Mohamed H.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ElTabakh, Mohamed Y.</au><au>Aref, Walid G.</au><au>Ouzzani, Mourad</au><au>Ali, Mohamed H.</au><au>Dalkilic, Mehmet M.</au><au>Yang, Jiong</au><au>Kim, Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discovering Consensus Patterns in Biological Databases</atitle><btitle>Data Mining and Bioinformatics</btitle><date>2006</date><risdate>2006</risdate><spage>170</spage><epage>184</epage><pages>170-184</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540689706</isbn><isbn>3540689702</isbn><eisbn>9783540689713</eisbn><eisbn>3540689710</eisbn><abstract>Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11960669_15</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Data Mining and Bioinformatics, 2006, p.170-184
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_11960669_15
source Springer Books
title Discovering Consensus Patterns in Biological Databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discovering%20Consensus%20Patterns%20in%20Biological%20Databases&rft.btitle=Data%20Mining%20and%20Bioinformatics&rft.au=ElTabakh,%20Mohamed%20Y.&rft.date=2006&rft.spage=170&rft.epage=184&rft.pages=170-184&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540689706&rft.isbn_list=3540689702&rft_id=info:doi/10.1007/11960669_15&rft_dat=%3Cspringer%3Espringer_books_10_1007_11960669_15%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540689713&rft.eisbn_list=3540689710&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true