Discovering Consensus Patterns in Biological Databases
Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. T...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | |
container_start_page | 170 |
container_title | |
container_volume | |
creator | ElTabakh, Mohamed Y. Aref, Walid G. Ouzzani, Mourad Ali, Mohamed H. |
description | Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques. |
doi_str_mv | 10.1007/11960669_15 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_11960669_15</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_11960669_15</sourcerecordid><originalsourceid>FETCH-LOGICAL-s189t-9df8328e889ca9c2f87c47c50716350fed004787cfa26bab857d7171085efd2e3</originalsourceid><addsrcrecordid>eNpVkEtLxEAQhMcXGNac_AO5eoh2pzOvo-6uD1jQg57DZDKzRENG0tHf76560LoUVEHxUUKcI1wigL5CtAqUsg3KA5FbbUjWoIzVSIciQ4VYEtX26F8H6lhkQFCVVtd0KnLmV9iJUCOYTKhVzz59hqkft8UyjRxG_uDiyc1zmEYu-rG46dOQtr13Q7Fys2sdBz4TJ9ENHPJfX4iX2_Xz8r7cPN49LK83JaOxc2m7aKgywRjrnfVVNNrX2kvQqEhCDB1ArXdhdJVqXWuk7vQ3mQyxqwItxMXPLr_vCcPUtCm9cYPQ7D9p_nxCXwCBTaE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discovering Consensus Patterns in Biological Databases</title><source>Springer Books</source><creator>ElTabakh, Mohamed Y. ; Aref, Walid G. ; Ouzzani, Mourad ; Ali, Mohamed H.</creator><contributor>Dalkilic, Mehmet M. ; Yang, Jiong ; Kim, Sun</contributor><creatorcontrib>ElTabakh, Mohamed Y. ; Aref, Walid G. ; Ouzzani, Mourad ; Ali, Mohamed H. ; Dalkilic, Mehmet M. ; Yang, Jiong ; Kim, Sun</creatorcontrib><description>Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540689706</identifier><identifier>ISBN: 3540689702</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540689713</identifier><identifier>EISBN: 3540689710</identifier><identifier>DOI: 10.1007/11960669_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Data Mining and Bioinformatics, 2006, p.170-184</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11960669_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11960669_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Dalkilic, Mehmet M.</contributor><contributor>Yang, Jiong</contributor><contributor>Kim, Sun</contributor><creatorcontrib>ElTabakh, Mohamed Y.</creatorcontrib><creatorcontrib>Aref, Walid G.</creatorcontrib><creatorcontrib>Ouzzani, Mourad</creatorcontrib><creatorcontrib>Ali, Mohamed H.</creatorcontrib><title>Discovering Consensus Patterns in Biological Databases</title><title>Data Mining and Bioinformatics</title><description>Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.</description><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540689706</isbn><isbn>3540689702</isbn><isbn>9783540689713</isbn><isbn>3540689710</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNpVkEtLxEAQhMcXGNac_AO5eoh2pzOvo-6uD1jQg57DZDKzRENG0tHf76560LoUVEHxUUKcI1wigL5CtAqUsg3KA5FbbUjWoIzVSIciQ4VYEtX26F8H6lhkQFCVVtd0KnLmV9iJUCOYTKhVzz59hqkft8UyjRxG_uDiyc1zmEYu-rG46dOQtr13Q7Fys2sdBz4TJ9ENHPJfX4iX2_Xz8r7cPN49LK83JaOxc2m7aKgywRjrnfVVNNrX2kvQqEhCDB1ArXdhdJVqXWuk7vQ3mQyxqwItxMXPLr_vCcPUtCm9cYPQ7D9p_nxCXwCBTaE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>ElTabakh, Mohamed Y.</creator><creator>Aref, Walid G.</creator><creator>Ouzzani, Mourad</creator><creator>Ali, Mohamed H.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2006</creationdate><title>Discovering Consensus Patterns in Biological Databases</title><author>ElTabakh, Mohamed Y. ; Aref, Walid G. ; Ouzzani, Mourad ; Ali, Mohamed H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s189t-9df8328e889ca9c2f87c47c50716350fed004787cfa26bab857d7171085efd2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ElTabakh, Mohamed Y.</creatorcontrib><creatorcontrib>Aref, Walid G.</creatorcontrib><creatorcontrib>Ouzzani, Mourad</creatorcontrib><creatorcontrib>Ali, Mohamed H.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ElTabakh, Mohamed Y.</au><au>Aref, Walid G.</au><au>Ouzzani, Mourad</au><au>Ali, Mohamed H.</au><au>Dalkilic, Mehmet M.</au><au>Yang, Jiong</au><au>Kim, Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discovering Consensus Patterns in Biological Databases</atitle><btitle>Data Mining and Bioinformatics</btitle><date>2006</date><risdate>2006</risdate><spage>170</spage><epage>184</epage><pages>170-184</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540689706</isbn><isbn>3540689702</isbn><eisbn>9783540689713</eisbn><eisbn>3540689710</eisbn><abstract>Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11960669_15</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Data Mining and Bioinformatics, 2006, p.170-184 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_11960669_15 |
source | Springer Books |
title | Discovering Consensus Patterns in Biological Databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discovering%20Consensus%20Patterns%20in%20Biological%20Databases&rft.btitle=Data%20Mining%20and%20Bioinformatics&rft.au=ElTabakh,%20Mohamed%20Y.&rft.date=2006&rft.spage=170&rft.epage=184&rft.pages=170-184&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540689706&rft.isbn_list=3540689702&rft_id=info:doi/10.1007/11960669_15&rft_dat=%3Cspringer%3Espringer_books_10_1007_11960669_15%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540689713&rft.eisbn_list=3540689710&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |