Discovering Consensus Patterns in Biological Databases

Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ElTabakh, Mohamed Y., Aref, Walid G., Ouzzani, Mourad, Ali, Mohamed H.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consensus patterns, like motifs and tandem repeats, are highly conserved patterns with very few substitutions where no gaps are allowed. In this paper, we present a progressive hierarchical clustering technique for discovering consensus patterns in biological databases over a certain length range. This technique can discover consensus patterns with various requirements by applying a post-processing phase. The progressive nature of the hierarchical clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.
ISSN:0302-9743
1611-3349
DOI:10.1007/11960669_15