Prediction of the Human Papillomavirus Risk Types Using Gap-Spectrum Kernels

Human Papillomavirus (HPV) is known as the main cause of cervical cancer and classified to low- or high-risk type by its malignant potential. Detection of high-risk HPVs is critical to understand the mechanisms and recognize potential patients in medical judgments. In this paper, we present a simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Sun, Eom, Jae-Hong
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human Papillomavirus (HPV) is known as the main cause of cervical cancer and classified to low- or high-risk type by its malignant potential. Detection of high-risk HPVs is critical to understand the mechanisms and recognize potential patients in medical judgments. In this paper, we present a simple kernel approach to classify HPV risk types from E6 protein sequences. Our method uses support vector machines combined with gap-spectrum kernels. The gap-spectrum kernel is introduced to compute the similarity between amino acids pairs with a fixed distance, which can be useful for the helical structure of proteins. In the experiments, the proposed method is compared with a mismatch kernel approach in accuracy and F1-score, and the predictions for unknown types are presented.
ISSN:0302-9743
1611-3349
DOI:10.1007/11760191_104