Prediction of the Human Papillomavirus Risk Types Using Gap-Spectrum Kernels
Human Papillomavirus (HPV) is known as the main cause of cervical cancer and classified to low- or high-risk type by its malignant potential. Detection of high-risk HPVs is critical to understand the mechanisms and recognize potential patients in medical judgments. In this paper, we present a simple...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human Papillomavirus (HPV) is known as the main cause of cervical cancer and classified to low- or high-risk type by its malignant potential. Detection of high-risk HPVs is critical to understand the mechanisms and recognize potential patients in medical judgments. In this paper, we present a simple kernel approach to classify HPV risk types from E6 protein sequences. Our method uses support vector machines combined with gap-spectrum kernels. The gap-spectrum kernel is introduced to compute the similarity between amino acids pairs with a fixed distance, which can be useful for the helical structure of proteins. In the experiments, the proposed method is compared with a mismatch kernel approach in accuracy and F1-score, and the predictions for unknown types are presented. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11760191_104 |