An Intelligent System Based on Kernel Methods for Crop Yield Prediction

This paper presents work on developing a software system for predicting crop yield from climate and plantation data. At the core of this system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Awan, A. Majid, Sap, Mohd. Noor Md
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents work on developing a software system for predicting crop yield from climate and plantation data. At the core of this system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. For this purpose, a robust weighted kernel k-means algorithm incorporating spatial constraints is presented. The algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.
ISSN:0302-9743
1611-3349
DOI:10.1007/11731139_98