Representing Diffusion MRI in 5D for Segmentation of White Matter Tracts with a Level Set Method

We present a method for segmenting white matter tracts from high angular resolution diffusion MR images by representing the data in a 5 dimensional space of position and orientation. Whereas crossing fiber tracts cannot be separated in 3D position space, they clearly disentangle in 5D position-orien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information Processing in Medical Imaging 2005, Vol.19, p.311-320
Hauptverfasser: Jonasson, Lisa, Hagmann, Patric, Bresson, Xavier, Thiran, Jean-Philippe, Wedeen, Van J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method for segmenting white matter tracts from high angular resolution diffusion MR images by representing the data in a 5 dimensional space of position and orientation. Whereas crossing fiber tracts cannot be separated in 3D position space, they clearly disentangle in 5D position-orientation space. The segmentation is done using a 5D level set method applied to hyper-surfaces evolving in 5D position-orientation space. In this paper we present a methodology for constructing the position-orientation space. We then show how to implement the standard level set method in such a non-Euclidean high dimensional space. The level set theory is basically defined for N-dimensions but there are several practical implementation details to consider, such as mean curvature. Finally, we will show results from a synthetic model and a few preliminary results on real data of a human brain acquired by high angular resolution diffusion MRI.
ISSN:0302-9743
1011-2499
1611-3349
DOI:10.1007/11505730_26