Self-Organizing Spatial Shapes in Mobile Particles: The TOTA Approach
We present a programming approach to let a multitude of simple mobile computational “particles” (i.e. sorts of tiny mobile robots) to self-organize their respective locations to assume a coherent global formation (i.e. shape). The problem has a variety of applications in mobile robotics, modular rob...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a programming approach to let a multitude of simple mobile computational “particles” (i.e. sorts of tiny mobile robots) to self-organize their respective locations to assume a coherent global formation (i.e. shape). The problem has a variety of applications in mobile robotics, modular robots, sensor networks, and computational self-assembly. Here we show how the TOTA (“Tuples On The Air”) middleware can be effectively exploited to enable self-organization of spatial shapes in mobile particles with minimal capabilities. The key idea in TOTA is to rely on spatially distributed tuples, spread across the network, to drive particles’ movements and activities. Several experiments are reported showing the effectiveness of the approach. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11494676_9 |