Digital Twins for Bioprocess Control Strategy Development and Realisation

New innovative Digital Twins can represent complex bioprocesses, including the biological, physico-chemical, and chemical reaction kinetics, as well as the mechanical and physical characteristics of the reactors and the involved peripherals. Digital Twins are an ideal tool for the rapid and cost-eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Appl, Christian, Moser, André, Baganz, Frank, Hass, Volker C.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New innovative Digital Twins can represent complex bioprocesses, including the biological, physico-chemical, and chemical reaction kinetics, as well as the mechanical and physical characteristics of the reactors and the involved peripherals. Digital Twins are an ideal tool for the rapid and cost-effective development, realisation and optimisation of control and automation strategies. They may be utilised for the development and implementation of conventional controllers (e.g. temperature, dissolved oxygen, etc.), as well as for advanced control strategies (e.g. control of substrate or metabolite concentrations, multivariable controls), and the development of complete bioprocess control. This chapter describes the requirements Digital Twins must fulfil to be used for bioprocess control strategy development, and implementation and gives an overview of research projects where Digital Twins or "early-stage" Digital Twins were used in this context. Furthermore, applications of Digital Twins for the academic education of future control and bioprocess engineers as well as for the training of future bioreactor operators will be described. Finally, a case study is presented, in which an "early-stage" Digital Twin was applied for the development of control strategies of the fed-batch cultivation of Saccharomyces cerevisiae. Development, realisation and optimisation of control strategies utilising Digital Twins.
ISSN:0724-6145
1616-8542
DOI:10.1007/10_2020_151