Quintic Reciprocity and Primality Test for Numbers of the Form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M~=~A5^{n} \pm ~\omega_{n}$\end{document}
The Quintic Reciprocity Law is used to produce an algorithm, that runs in polynomial time, and that determines the primality of numbers M such that M4 − 1 is divisible by a power of 5 which is larger that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Quintic Reciprocity Law is used to produce an algorithm, that runs in polynomial time, and that determines the primality of numbers M such that M4 − 1 is divisible by a power of 5 which is larger that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\sqrt{M}$\end{document}, provided that a small prime p, p ≡ 1 (mod 5) is given, such that M is not a fifth power modulo p. The same test equations are used for all such M.
If M is a fifth power modulo p, a sufficient condition that determines the primality of M is given. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/10719839_28 |