Data mining for business analytics: concepts, techniques, and applications in R
Overview of the data mining process -- Data visualization -- Dimension reduction -- Evaluating predictive performance -- Multiple linear regression -- k-Nearest Neighbors (kNN) -- The Naive Bayes classifier -- Classification and regression trees -- Logistic regression -- Neural nets -- Discriminant...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Overview of the data mining process -- Data visualization -- Dimension reduction -- Evaluating predictive performance -- Multiple linear regression -- k-Nearest Neighbors (kNN) -- The Naive Bayes classifier -- Classification and regression trees -- Logistic regression -- Neural nets -- Discriminant analysis -- Combining methods : ensembles and uplift modeling -- Association rules and collaborative filtering -- Cluster analysis -- Handling time series -- Regression-based forecasting -- Smoothing methods -- Social network analytics -- Text mining -- Cases |
---|