A physics-informed machine learning based dispersion curve estimation for non-homogeneous media
Modern machine learning has been on the rise in many scientific domains, such as acoustics. Many scientific problems face challenges with limited data, which prevent the use of the many powerful machine learning strategies. In response, the physics of wave-propagation can be exploited to reduce the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 50 |
creator | Tetali, Harsha Vardhan Harley, Joel B. |
description | Modern machine learning has been on the rise in many scientific domains, such as acoustics. Many scientific problems face challenges with limited data, which prevent the use of the many powerful machine learning strategies. In response, the physics of wave-propagation can be exploited to reduce the amount of data necessary and improve performance of machine learning techniques. Based on this need, we present a physics-informed machine learning framework, known as wave-informed regression, to extract dispersion curves from a guided wave wavefield data from non-homogeneous media. Wave-informed regression blends matrix factorization with known wave-physics by borrowing results from optimization theory. We briefly derive the algorithm and discuss a signal processing-based interpretability aspect of it, which aids in extracting dispersion curves for non-homogenous media. We show our results on a non-homogeneous media, where the dispersion curves change as a function of space. We demonstrate our ability to use wave-informed regression to extract spatially local dispersion curves. |
doi_str_mv | 10.1121/2.0001739 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1121_2_0001739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>poma</sourcerecordid><originalsourceid>FETCH-LOGICAL-s105t-27e1fb9a2dd70ad98c01e4292f0d0660d09963c3c5c07e744dcd72ece50f91523</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMgWKsH_0HOQuqbZHfTHEvxCwpeFLyFNHm3G-kmS7IV-u_d2l5mYGCG4SHkgcOCc8GfxAIAuJL6isy4lpotAb5vyG0pPwANF009I2ZFh-5YgissxDblHj3tretCRLpHm2OIO7q1ZYp9KAPmElKk7pB_kWIZQ2_HUzA1aUyRdalPO4yYDoVOU8HekevW7gveX3xOvl6eP9dvbPPx-r5ebVjhUI9MKOTtVlvhvQLr9dIBx0po0YKHpplE60Y66WoHClVVeeeVQIc1tJrXQs7J43m3uDD-fzJDnt7lo-FgTjiMMBcc8g9oPFXV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A physics-informed machine learning based dispersion curve estimation for non-homogeneous media</title><source>AIP Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tetali, Harsha Vardhan ; Harley, Joel B.</creator><creatorcontrib>Tetali, Harsha Vardhan ; Harley, Joel B.</creatorcontrib><description>Modern machine learning has been on the rise in many scientific domains, such as acoustics. Many scientific problems face challenges with limited data, which prevent the use of the many powerful machine learning strategies. In response, the physics of wave-propagation can be exploited to reduce the amount of data necessary and improve performance of machine learning techniques. Based on this need, we present a physics-informed machine learning framework, known as wave-informed regression, to extract dispersion curves from a guided wave wavefield data from non-homogeneous media. Wave-informed regression blends matrix factorization with known wave-physics by borrowing results from optimization theory. We briefly derive the algorithm and discuss a signal processing-based interpretability aspect of it, which aids in extracting dispersion curves for non-homogenous media. We show our results on a non-homogeneous media, where the dispersion curves change as a function of space. We demonstrate our ability to use wave-informed regression to extract spatially local dispersion curves.</description><identifier>EISSN: 1939-800X</identifier><identifier>DOI: 10.1121/2.0001739</identifier><identifier>CODEN: PMARCW</identifier><language>eng</language><ispartof>Proceedings of Meetings on Acoustics, 2022, Vol.50 (1)</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1269-265X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/poma/article-lookup/doi/10.1121/2.0001739$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>208,309,310,776,780,785,786,790,4498,23911,23912,25120,27904,76130</link.rule.ids></links><search><creatorcontrib>Tetali, Harsha Vardhan</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><title>A physics-informed machine learning based dispersion curve estimation for non-homogeneous media</title><title>Proceedings of Meetings on Acoustics</title><description>Modern machine learning has been on the rise in many scientific domains, such as acoustics. Many scientific problems face challenges with limited data, which prevent the use of the many powerful machine learning strategies. In response, the physics of wave-propagation can be exploited to reduce the amount of data necessary and improve performance of machine learning techniques. Based on this need, we present a physics-informed machine learning framework, known as wave-informed regression, to extract dispersion curves from a guided wave wavefield data from non-homogeneous media. Wave-informed regression blends matrix factorization with known wave-physics by borrowing results from optimization theory. We briefly derive the algorithm and discuss a signal processing-based interpretability aspect of it, which aids in extracting dispersion curves for non-homogenous media. We show our results on a non-homogeneous media, where the dispersion curves change as a function of space. We demonstrate our ability to use wave-informed regression to extract spatially local dispersion curves.</description><issn>1939-800X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNotkE1LAzEYhIMgWKsH_0HOQuqbZHfTHEvxCwpeFLyFNHm3G-kmS7IV-u_d2l5mYGCG4SHkgcOCc8GfxAIAuJL6isy4lpotAb5vyG0pPwANF009I2ZFh-5YgissxDblHj3tretCRLpHm2OIO7q1ZYp9KAPmElKk7pB_kWIZQ2_HUzA1aUyRdalPO4yYDoVOU8HekevW7gveX3xOvl6eP9dvbPPx-r5ebVjhUI9MKOTtVlvhvQLr9dIBx0po0YKHpplE60Y66WoHClVVeeeVQIc1tJrXQs7J43m3uDD-fzJDnt7lo-FgTjiMMBcc8g9oPFXV</recordid><startdate>20221205</startdate><enddate>20221205</enddate><creator>Tetali, Harsha Vardhan</creator><creator>Harley, Joel B.</creator><scope/><orcidid>https://orcid.org/0000-0003-1269-265X</orcidid></search><sort><creationdate>20221205</creationdate><title>A physics-informed machine learning based dispersion curve estimation for non-homogeneous media</title><author>Tetali, Harsha Vardhan ; Harley, Joel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s105t-27e1fb9a2dd70ad98c01e4292f0d0660d09963c3c5c07e744dcd72ece50f91523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tetali, Harsha Vardhan</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tetali, Harsha Vardhan</au><au>Harley, Joel B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A physics-informed machine learning based dispersion curve estimation for non-homogeneous media</atitle><btitle>Proceedings of Meetings on Acoustics</btitle><date>2022-12-05</date><risdate>2022</risdate><volume>50</volume><issue>1</issue><eissn>1939-800X</eissn><coden>PMARCW</coden><abstract>Modern machine learning has been on the rise in many scientific domains, such as acoustics. Many scientific problems face challenges with limited data, which prevent the use of the many powerful machine learning strategies. In response, the physics of wave-propagation can be exploited to reduce the amount of data necessary and improve performance of machine learning techniques. Based on this need, we present a physics-informed machine learning framework, known as wave-informed regression, to extract dispersion curves from a guided wave wavefield data from non-homogeneous media. Wave-informed regression blends matrix factorization with known wave-physics by borrowing results from optimization theory. We briefly derive the algorithm and discuss a signal processing-based interpretability aspect of it, which aids in extracting dispersion curves for non-homogenous media. We show our results on a non-homogeneous media, where the dispersion curves change as a function of space. We demonstrate our ability to use wave-informed regression to extract spatially local dispersion curves.</abstract><doi>10.1121/2.0001739</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1269-265X</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1939-800X |
ispartof | Proceedings of Meetings on Acoustics, 2022, Vol.50 (1) |
issn | 1939-800X |
language | eng |
recordid | cdi_scitation_primary_10_1121_2_0001739 |
source | AIP Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | A physics-informed machine learning based dispersion curve estimation for non-homogeneous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20physics-informed%20machine%20learning%20based%20dispersion%20curve%20estimation%20for%20non-homogeneous%20media&rft.btitle=Proceedings%20of%20Meetings%20on%20Acoustics&rft.au=Tetali,%20Harsha%20Vardhan&rft.date=2022-12-05&rft.volume=50&rft.issue=1&rft.eissn=1939-800X&rft.coden=PMARCW&rft_id=info:doi/10.1121/2.0001739&rft_dat=%3Cscitation%3Epoma%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |