A physics-informed machine learning based dispersion curve estimation for non-homogeneous media

Modern machine learning has been on the rise in many scientific domains, such as acoustics. Many scientific problems face challenges with limited data, which prevent the use of the many powerful machine learning strategies. In response, the physics of wave-propagation can be exploited to reduce the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tetali, Harsha Vardhan, Harley, Joel B.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern machine learning has been on the rise in many scientific domains, such as acoustics. Many scientific problems face challenges with limited data, which prevent the use of the many powerful machine learning strategies. In response, the physics of wave-propagation can be exploited to reduce the amount of data necessary and improve performance of machine learning techniques. Based on this need, we present a physics-informed machine learning framework, known as wave-informed regression, to extract dispersion curves from a guided wave wavefield data from non-homogeneous media. Wave-informed regression blends matrix factorization with known wave-physics by borrowing results from optimization theory. We briefly derive the algorithm and discuss a signal processing-based interpretability aspect of it, which aids in extracting dispersion curves for non-homogenous media. We show our results on a non-homogeneous media, where the dispersion curves change as a function of space. We demonstrate our ability to use wave-informed regression to extract spatially local dispersion curves.
ISSN:1939-800X
DOI:10.1121/2.0001739