Auditory inspired machine learning techniques can improve speech intelligibility and quality for hearing-impaired listenersa

Machine-learning based approaches to speech enhancement have recently shown great promise for improving speech intelligibility for hearing-impaired listeners. Here, the performance of three machine-learning algorithms and one classical algorithm, Wiener filtering, was compared. Two algorithms based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2017-03, Vol.141 (3), p.1985-1998
Hauptverfasser: Monaghan, Jessica J. M., Goehring, Tobias, Yang, Xin, Bolner, Federico, Wang, Shangqiguo, Wright, Matthew C. M., Bleeck, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine-learning based approaches to speech enhancement have recently shown great promise for improving speech intelligibility for hearing-impaired listeners. Here, the performance of three machine-learning algorithms and one classical algorithm, Wiener filtering, was compared. Two algorithms based on neural networks were examined, one using a previously reported feature set and one using a feature set derived from an auditory model. The third machine-learning approach was a dictionary-based sparse-coding algorithm. Speech intelligibility and quality scores were obtained for participants with mild-to-moderate hearing impairments listening to sentences in speech-shaped noise and multi-talker babble following processing with the algorithms. Intelligibility and quality scores were significantly improved by each of the three machine-learning approaches, but not by the classical approach. The largest improvements for both speech intelligibility and quality were found by implementing a neural network using the feature set based on auditory modeling. Furthermore, neural network based techniques appeared more promising than dictionary-based, sparse coding in terms of performance and ease of implementation.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.4977197