Polyvinylidene fluoride transducer shape optimization for the characterization of anisotropic materials
In the context of ultrasonic determination of mechanical properties, it is common to use oblique incident waves to characterize fluid-immersed anisotropic samples. The lateral displacement of the ultrasonic field owing to leaky guided wave phenomena poses a challenge for data inversion because beam...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2024-12, Vol.156 (6), p.3943-3953 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the context of ultrasonic determination of mechanical properties, it is common to use oblique incident waves to characterize fluid-immersed anisotropic samples. The lateral displacement of the ultrasonic field owing to leaky guided wave phenomena poses a challenge for data inversion because beam spreading is rarely well represented by plane wave models. In this study, a finite beam model based on the angular spectrum method was developed to estimate the influence of the transducer shape and position on the transmitted signals. Additionally, anisotropic solids were considered so that the beam skewing effect was contemplated. A small-emitter large-receiver configuration was chosen, and the ideal shape and position of the receiving transducer were obtained through a meta-heuristic optimization approach with the goal of achieving a measurement system that sufficiently resembles plane wave propagation. A polyvinylidene fluoride receiver was fabricated based on the findings and tested in three cases: a single-crystal silicon wafer, a lightly anisotropic stainless-steel plate, and a highly anisotropic composite plate. Good agreement was found between the measurements and the plane wave model. |
---|---|
ISSN: | 0001-4966 1520-8524 1520-8524 |
DOI: | 10.1121/10.0034601 |