Generating patient-specific acoustic simulations for transcranial focused ultrasound procedures based on optical tracking information
During transcranial focused ultrasound (FUS) procedures, accurate targeting is important and neuronavigation with optically tracked tools is used to estimate the free-field focal location on pre-acquired images. Offline neuronavigation systems do not typically incorporate aberrating effects of the s...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2022-10, Vol.152 (4), p.A155-A155 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During transcranial focused ultrasound (FUS) procedures, accurate targeting is important and neuronavigation with optically tracked tools is used to estimate the free-field focal location on pre-acquired images. Offline neuronavigation systems do not typically incorporate aberrating effects of the skull known to displace and distort the focus. Here, we developed a pipeline that integrated patient-specific acoustic simulations informed by transformations from optically tracked FUS procedures as a tool to evaluate transcranial pressure fields and demonstrated its use in three FUS scenarios: magnetic resonance imaging-guided (MR-guided) phantom experiments, MR-guided non-human primate (NHP) experiments, an offline behaving NHP experiments. Distance vectors between the estimated focus from optical tracking and peak intracranial location from simulations were less than 1 mm for all groups (Phantom: 0.6 ± 0.3 mm, NHP: 0.7 ± 0.3 mm, Behaving NHP: 0.5 ± 0.2 mm). Comparisons of the target registration error of MR measurements with the optically tracked focus (TRETracked) and simulated focus (TRESimulated) suggest that focal location errors are dominated by optical tracking errors rather than aberration through the skull in the NHP (Phantom: TRETracked: 3.3 ± 1.4 mm, Phantom TRESimulated: 3.3 ± 1.9 mm, NHP TRETracked: 3.9 ± 1.9 mm, NHP TRESimulated: 4.1 ± 1.6 mm). Our software pipeline provides patient-specific estimates of the acoustic field during transcranial FUS procedures. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/10.0015868 |