Modeling the effect of random roughness on synthetic aperture sonar image statistics
A model has been developed to predict the effect of random seafloor roughness on synthetic aperture sonar (SAS) image statistics, based on the composite roughness approximation–a physical scattering model. The continuous variation in scattering strength produced by a random slope field is treated as...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2022-09, Vol.152 (3), p.1363-1374 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A model has been developed to predict the effect of random seafloor roughness on synthetic aperture sonar (SAS) image statistics, based on the composite roughness approximation–a physical scattering model. The continuous variation in scattering strength produced by a random slope field is treated as an intensity scaling on the image speckle produced by the coherent SAS imaging process. Changes in image statistics caused by roughness are quantified in terms of the scintillation index (SI). Factors influencing the SI include the seafloor slope variance, geo-acoustic properties of the seafloor, the probability density function describing the speckle, and the signal-to-noise ratio. Example model-data comparisons are shown for SAS images taken at three different sites using three different high-frequency SAS systems. Agreement between the modeled and measured SI show that it is possible to link range-dependent image statistics to measurable geo-acoustic properties, providing the foundation necessary for solving problems related to the detection of targets using high-frequency imaging sonars, including performance prediction or adaptation of automated detection algorithms. Additionally, this work illustrates the possible use of SAS systems for remote sensing of roughness parameters such as root mean square slope or height. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/10.0013837 |