Self and mutual radiation impedances between translated spheroids. Application to parallel disks
This article derives the radiation impedance for two parallel pistons in two different configurations: baffled and unbaffled. For the former, the cylindrical system of coordinates is adapted to compute the self and mutual impedance of a piston between perfectly rigid infinite parallel planes. For th...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2021-09, Vol.150 (3), p.1794-1805 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article derives the radiation impedance for two parallel pistons in two different configurations: baffled and unbaffled. For the former, the cylindrical system of coordinates is adapted to compute the self and mutual impedance of a piston between perfectly rigid infinite parallel planes. For the latter, spheroidal coordinates are used and declined for the case of two disks in free-space. The formulae for Green's function that respects Neumann boundary conditions are established in both configurations in order to compute the pressure field using the Huygens-Fresnel principle. Contrasting with the radiation impedance obtained for one single radiator, both systems exhibit resonant frequencies. The result of this study, validated in each case by a numerical method, can be used to predict the acoustic interaction of two vibrating systems for which their radiation surfaces are facing each other. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/10.0006106 |