Approximations for the period of the simple pendulum based on the arithmetic-geometric mean
We use the arithmetic-geometric mean to derive approximate solutions for the period of the simple pendulum. The fast convergence of the arithmetic-geometric mean yields accurate solutions. We also discuss the invention of the pendulum clock by Christiaan Huygens in 1656–1657.
Gespeichert in:
Veröffentlicht in: | American journal of physics 2008-12, Vol.76 (12), p.1150-1154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the arithmetic-geometric mean to derive approximate solutions for the period of the simple pendulum. The fast convergence of the arithmetic-geometric mean yields accurate solutions. We also discuss the invention of the pendulum clock by Christiaan Huygens in 1656–1657. |
---|---|
ISSN: | 0002-9505 1943-2909 |
DOI: | 10.1119/1.2968864 |