The quantum pendulum: Small and large
The quantum pendulum finds application in surprising contexts. We use commercially available software to numerically solve the Schrödinger equation for a microscopic pendulum subject to molecular (electromagnetic) restoring forces, and a macroscopic pendulum subject to a gravitational restoring forc...
Gespeichert in:
Veröffentlicht in: | American journal of physics 2002-05, Vol.70 (5), p.525-531 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quantum pendulum finds application in surprising contexts. We use commercially available software to numerically solve the Schrödinger equation for a microscopic pendulum subject to molecular (electromagnetic) restoring forces, and a macroscopic pendulum subject to a gravitational restoring force. The dynamics of the microscopic quantum pendulum are closely related to molecular motions known as hindered rotations. We use standard probabilistic methods to predict whether this motion is weakly or strongly hindered at ambient temperature and test the prediction against experimental data for
C
2
H
6
and
K
2
PtCl
6
.
For the macroscopic gravitational pendulum, we examine the uncertainty in position and find, not surprisingly, that it is too small to measure physically, but is nevertheless relatively large compared to present-day limits in computation. The latter juxtaposition of computational precision with quantum uncertainty has consequences for the study of chaotic dynamics. |
---|---|
ISSN: | 0002-9505 1943-2909 |
DOI: | 10.1119/1.1456069 |