SU‐E‐T‐598: Variability of Computer‐Generated Organ at Risk Contours as Part of An Automated Deformable Registration Workflow for Prostate Cancer
Purpose: To compare the contouring variability of organs at risk (OAR) on planning CT (PCT), first day cone‐beam computed tomography (CBCT1), and computer‐generated contours on subsequent fractions (CBCTf) through the use of a deformable registration workflow, as could be used for an adaptive radiot...
Gespeichert in:
Veröffentlicht in: | Medical Physics 2013-06, Vol.40 (6), p.343-343 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: To compare the contouring variability of organs at risk (OAR) on planning CT (PCT), first day cone‐beam computed tomography (CBCT1), and computer‐generated contours on subsequent fractions (CBCTf) through the use of a deformable registration workflow, as could be used for an adaptive radiotherapy planning scheme for prostate cancer. Methods: Eleven observers (6 physician‐residents, 5 physicists; all with extensive experience with prostate anatomy, treatment planning) contoured the bladder, rectum, and patient skin, using Elekta Focal on PCT (GE HiLite) and CBCT (Elekta XVI). These contours were compared to consensus contours generated with STAPLE method (CERR) which combined the contours of two recognized physician experts. This was done for the PCT and CBCT1. The CBCT1 contours were transformed via deformable registration workflow (MIM software) to 10 subsequent fractions (CBCTf) creating 333 computer‐generated OAR contours in total. The computer‐generated contours were compared to manually segmented reference contours, which were reviewed with the leading physicist and physician of the study. Dice coefficient was used to quantify variability. Statistical analysis utilized two‐sided t‐test; p‐values |
---|---|
ISSN: | 0094-2405 2473-4209 |
DOI: | 10.1118/1.4815026 |