Quantification of breast density with dual energy mammography: An experimental feasibility study

Purpose: Breast density, the percentage of glandular breast tissue, has been shown to be a strong indicator of breast cancer risk. A quantitative method to measure breast density with dual energy mammography was investigated using physical phantoms. Methods: The dual energy mammography system used a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2010-02, Vol.37 (2), p.793-801
Hauptverfasser: Ducote, Justin L., Molloi, Sabee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Breast density, the percentage of glandular breast tissue, has been shown to be a strong indicator of breast cancer risk. A quantitative method to measure breast density with dual energy mammography was investigated using physical phantoms. Methods: The dual energy mammography system used a tungsten anode x-ray tube with a 50   μ m rhodium beam filter for low energy images and a 300   μ m copper beam filter for high energy images. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Four different phantom studies were used to evaluate the technique. The first study consisted of phantoms with thicknesses of 2.5–8.5 cm in 0.5 cm steps with variable densities centered at a mean of 28%. The second study consisted of phantoms at a fixed thickness of 4.0 cm, which ranged in densities from 0% to 100% in increments of 12.5%. The third study consisted of 4.0 cm thick phantoms at densities of 25%, 50% and 75% each imaged at three areal sizes, approximately 62.5, 125, and 250   cm 2 , in order to assess the effect of breast size on density measurement. The fourth study consisted of step phantoms designed to more closely mimic the shape of a female breast with maximal thicknesses from 3.0 to 7.0 cm at a fixed density of 50%. All images were corrected for x-ray scatter. Results: The RMS errors in breast density measurements were 0.44% for the variable thickness phantoms, 0.64% for the variable density phantoms, 2.87% for the phantoms of different areal sizes, and 4.63% for step phantoms designed to closely resemble the shape of a breast. Conclusions: The results of the phantom studies indicate that dual energy mammography can be used to measure breast density with an RMS error of approximately 5%.
ISSN:0094-2405
2473-4209
0094-2405
DOI:10.1118/1.3284975